Earth Dikes and Drainage Swales

Description and Purpose
An earth dike is a temporary berm or ridge of compacted soil used to divert runoff or channel water to a desired location. A drainage swale is a shaped and sloped depression in the soil surface used to convey runoff to a desired location. Earth dikes and drainage swales are used to divert off-site runoff around the construction site, divert runoff from stabilized areas and disturbed areas, and direct runoff into sediment basins or traps.

Suitable Applications
Earth dikes and drainage swales are suitable for use, individually or together, where runoff needs to be diverted from one area and conveyed to another.

- Earth dikes and drainage swales may be used:
 - To convey surface runoff down sloping land
 - To intercept and divert runoff to avoid sheet flow over sloped surfaces
 - To divert and direct runoff towards a stabilized watercourse, drainage pipe or channel
 - To intercept runoff from paved surfaces
 - To intercept and divert run-on
 - Below steep grades where runoff begins to concentrate

Legend:
- Primary Objective
- Secondary Objective

Targeted Constituents
Sediment

Potential Alternatives
None
Earth Dikes and Drainage Swales

- Along roadways and facility improvements subject to flood drainage
- At the top of slopes to divert runon from adjacent or undisturbed slopes
- At bottom and mid slope locations to intercept sheet flow and convey concentrated flows
- Divert sediment laden runoff into sediment basins or traps

Limitations
Dikes should not be used for drainage areas greater than 10 acres or along slopes greater than 10 percent. For larger areas more permanent drainage structures should be built. All drainage structures should be built in compliance with local municipal requirements.

- Earth dikes may create more disturbed area on site and become barriers to construction equipment.
- Earth dikes must be stabilized immediately, which adds cost and maintenance concerns.
- Diverted stormwater may cause downstream flood damage.
- Dikes should not be constructed of soils that may be easily eroded.
- Regrading the site to remove the dike may add additional cost.
- Temporary drains and swales or any other diversion of runoff should not adversely impact upstream or downstream properties.
- Temporary drains and swales must conform to local floodplain management requirements.
- Earth dikes/drainage swales are not suitable as sediment trapping devices.
- It may be necessary to use other soil stabilization and sediment controls such as check dams, plastics, and blankets, to prevent scour and erosion in newly graded dikes, swales, and ditches.
- Sediment accumulation, scour depressions, and/or persistent non-stormwater discharges can result in areas of standing water suitable for mosquito production in drainage swales.

Implementation
The temporary earth dike is a berm or ridge of compacted soil, located in such a manner as to divert stormwater to a sediment trapping device or a stabilized outlet, thereby reducing the potential for erosion and offsite sedimentation. Earth dikes can also be used to divert runoff from off site and from undisturbed areas away from disturbed areas and to divert sheet flows away from unprotected slopes.

An earth dike does not itself control erosion or remove sediment from runoff. A dike prevents erosion by directing runoff to an erosion control device such as a sediment trap or directing runoff away from an erodible area. Temporary diversion dikes should not adversely impact adjacent properties and must conform to local floodplain management regulations and should not be used in areas with slopes steeper than 10%.
Slopes that are formed during cut and fill operations should be protected from erosion by runoff. A combination of a temporary drainage swale and an earth dike at the top of a slope can divert runoff to a location where it can be brought to the bottom of the slope (see EC-11, Slope Drains). A combination dike and swale is easily constructed by a single pass of a bulldozer or grader and compacted by a second pass of the tracks or wheels over the ridge. Diversion structures should be installed when the site is initially graded and remain in place until post construction BMPs are installed and the slopes are stabilized.

Diversion practices concentrate surface runoff, increasing its velocity and erosive force. Thus, the flow out of the drain or swale must be directed onto a stabilized area or into a grade stabilization structure. If significant erosion will occur, a swale should be stabilized using vegetation, chemical treatment, rock rip-rap, matting, or other physical means of stabilization. Any drain or swale that conveys sediment laden runoff must be diverted into a sediment basin or trap before it is discharged from the site.

General

- Care must be applied to correctly size and locate earth dikes, drainage swales. Excessively steep, unlined dikes, and swales are subject to erosion and gully formation.

- Conveyances should be stabilized.

- Use a lined ditch for high flow velocities.

- Select flow velocity based on careful evaluation of the risks due to erosion of the measure, soil types, overtopping, flow backups, washout, and drainage flow patterns for each project site.

- Compact any fills to prevent unequal settlement.

- Do not divert runoff onto other property without securing written authorization from the property owner.

- When possible, install and utilize permanent dikes, swales, and ditches early in the construction process.

- Provide stabilized outlets.

Earth Dikes

Temporary earth dikes are a practical, inexpensive BMP used to divert stormwater runoff. Temporary diversion dikes should be installed in the following manner:

- All dikes should be compacted by earth moving equipment.

- All dikes should have positive drainage to an outlet.

- All dikes should have 2:1 or flatter side slopes, 18 in. minimum height, and a minimum top width of 24 in. Wide top widths and flat slopes are usually needed at crossings for construction traffic.
Earth Dikes and Drainage Swales

- May be covered with hydro mulch, hydroseed, wood mulch, compost blanket, or RECP for stabilization.

- The outlet from the earth dike must function with a minimum of erosion. Runoff should be conveyed to a sediment trapping device such as a Sediment Trap (SE-3) or Sediment Basin (SE-2) when either the dike channel or the drainage area above the dike are not adequately stabilized.

- Temporary stabilization may be achieved using seed and mulching for slopes less than 5% and either rip-rap or sod for slopes in excess of 5%. In either case, stabilization of the earth dike should be completed immediately after construction or prior to the first rain.

- If riprap is used to stabilize the channel formed along the toe of the dike, the following typical specifications apply:

<table>
<thead>
<tr>
<th>Channel Grade</th>
<th>Riprap Stabilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5-1.0%</td>
<td>4 in. Rock</td>
</tr>
<tr>
<td>1.1-2.0%</td>
<td>6 in. Rock</td>
</tr>
<tr>
<td>2.1-4.0%</td>
<td>8 in. Rock</td>
</tr>
<tr>
<td>4.1-5.0%</td>
<td>8 in. -12 in. Riprap</td>
</tr>
</tbody>
</table>

- The stone riprap, recycled concrete, etc. used for stabilization should be pressed into the soil with construction equipment.

- Filter cloth may be used to cover dikes in use for long periods.

- Construction activity on the earth dike should be kept to a minimum.

Drainage Swales

Drainage swales are only effective if they are properly installed. Swales are more effective than dikes because they tend to be more stable. The combination of a swale with a dike on the downhill side is the most cost-effective diversion.

Standard engineering design criteria for small open channel and closed conveyance systems should be used (see the local drainage design manual). Unless local drainage design criteria state otherwise, drainage swales should be designed as follows:

- No more than 5 acres may drain to a temporary drainage swale.

- Place drainage swales above or below, not on, a cut or fill slope.

- Swale bottom width should be at least 2 ft.

- Depth of the swale should be at least 18 in.

- Side slopes should be 2:1 or flatter.

- Drainage or swales should be laid at a grade of at least 1%, but not more than 15%.
The swale must not be overtopped by the peak discharge from a 10-year storm, irrespective of the design criteria stated above.

Remove all trees, stumps, obstructions, and other objectionable material from the swale when it is built.

Compact any fill material along the path of the swale.

Stabilize all swales immediately. Seed and mulch swales at a slope of less than 5 % and use rip-rap or sod for swales with a slope between 5 and 15 %. For temporary swales, geotextiles and mats (EC-7) may provide immediate stabilization.

Irrigation may be required to establish sufficient vegetation to prevent erosion.

Do not operate construction vehicles across a swale unless a stabilized crossing is provided.

Permanent drainage facilities must be designed by a professional engineer (see the local drainage design criteria for proper design).

At a minimum, the drainage swale should conform to predevelopment drainage patterns and capacities.

Construct the drainage swale with a positive grade to a stabilized outlet.

Provide erosion protection or energy dissipation measures if the flow out of the drainage swale can reach an erosive velocity.

Costs

Cost ranges from $19 to $70 per ft. for both earthwork and stabilization and depends on availability of material, site location, and access (Adjusted for inflation (2016 dollars) by Tetra Tech, Inc.).

Small dikes: $3 - $8/linear ft.; Large dikes: $3/yd³ (Adjusted for inflation (2016 dollars) by Tetra Tech, Inc.).

The cost of a drainage swale increases with drainage area and slope. Typical swales for controlling internal erosion are inexpensive, as they are quickly formed during routine earthwork.

Inspection and Maintenance

Inspect ditches and berms for washouts. Replace lost riprap, damaged linings or soil stabilizers as needed.

Inspect channel linings, embankments, and beds of ditches and berms for erosion and accumulation of debris and sediment. Remove debris and sediment and repair linings and embankments as needed.

Temporary conveyances should be completely removed as soon as the surrounding drainage area has been stabilized or at the completion of construction.
Earth Dikes and Drainage Swales

NOTES:
1. Stabilize inlet, outlets and slopes.
2. Properly compact the subgrade.

TYPICAL DRAINAGE SWALE
NOT TO SCALE

TYPICAL EARTH DIKE
NOT TO SCALE

Napa County
LNU Lightning Complex 2020 BMPs
Based upon CASQA Construction BMP Online Handbook (2019)