Straw Mulch

Description and Purpose
Straw mulch consists of placing a uniform layer of straw and incorporating it into the soil with a studded roller or crimper or anchoring it with a tackifier or stabilizing emulsion. Straw mulch protects the soil surface from the impact of rain drops, preventing soil particles from becoming dislodged.

Suitable Applications
Straw mulch is suitable for disturbed areas requiring temporary protection until permanent stabilization is established. Straw mulch can be specified for the following applications:

- As a stand-alone BMP on disturbed areas until soils can be prepared for permanent vegetation. The longevity of straw mulch is typically less than six months.
- Applied in combination with temporary seeding strategies.
- Applied in combination with permanent seeding strategies to enhance plant establishment and final soil stabilization.
- Applied around containerized plantings to control erosion until the plants become established to provide permanent stabilization.

Limitations
- In areas prone to wildfires, straw should be stockpiled and deployed 48 hours prior to the first predicted storm event.

Categories

EC	Erosion Control
SE	Sediment Control
TC	Tracking Control
WE	Wind Erosion Control
NS	Non-Stormwater Management Control
WM	Waste Management and Materials Pollution Control

Legend:
- Primary Category
- Secondary Category

Targeted Constituents

- Sediment
- Nutrients
- Trash
- Metals
- Bacteria
- Oil and Grease
- Organics

Potential Alternatives

- EC-3 Hydraulic Mulch
- EC-4 Hydroseeding
- EC-5 Soil Binders
- EC-7 Geotextiles and Mats
- EC-8 Wood Mulching
- EC-14 Compost Blanket
Straw Mulch

- Availability of straw and straw blowing equipment may be limited just prior to the rainy season and prior to storms due to high demand.

- There is a potential for introduction of weed seed and unwanted plant material if weed-free agricultural straw is not specified.

- Straw mulch applied by hand is more time intensive and potentially costly.

- Wind may limit application of straw and blow straw into undesired locations.

- May have to be removed prior to permanent seeding or prior to further earthwork.

- “Punching” of straw does not work in sandy soils, necessitating the use of tackifiers.

- Potential fugitive dust control issues associated with straw applications can occur. Application of a stabilizing emulsion or a water stream at the same time straw is being blown can reduce this problem.

Implementation

- Straw should be derived from weed-free wheat, rice, or barley. Where required by the plans, specifications, permits, or environmental documents, native grass straw should be used.

- Use tackifier to anchor straw mulch to the soil on slopes.

- Crimping, punch roller-type rollers, or track walking may also be used to incorporate straw mulch into the soil on slopes. Track walking can be used where other methods are impractical.

- Avoid placing straw onto roads, sidewalks, drainage channels, existing vegetation, etc.

- Straw mulch with tackifier should not be applied during or immediately before rainfall.

Application Procedures

- When using a tackifier to anchor the straw mulch, roughen embankment or fill areas by rolling with a crimping or punching-type roller or by track walking before placing the straw mulch. Track walking should only be used where rolling is impractical.

- Apply straw at a rate of between 3,000 and 4,000 lb./acre, either by machine or by hand distribution and provide 100% ground cover. A lighter application is used for flat surfaces and a heavier application is used for slopes.

- Evenly distribute straw mulch on the soil surface.

- Anchoring straw mulch to the soil surface by "punching" it into the soil mechanically (incorporating) can be used in lieu of a tackifier.

- Methods for holding the straw mulch in place depend upon the slope steepness, accessibility, soil conditions, and longevity.
Straw Mulch

- A tackifier acts to glue the straw fibers together and to the soil surface. The tackifier should be selected based on longevity and ability to hold the fibers in place. A tackifier is typically applied at a rate of 125 lb./acre. In windy conditions, the rates are typically 180 lb./acre.

- On very small areas, a spade or shovel can be used to punch in straw mulch.

- On slopes with soils that are stable enough and of sufficient gradient to safely support construction equipment without contributing to compaction and instability problems, straw can be "punched" into the ground using a knife blade roller or a straight bladed coulter, known commercially as a "crimper.”

Costs
Average annual cost for installation and maintenance is included in the table below. Application by hand is more time intensive and potentially more costly.

<table>
<thead>
<tr>
<th>BMP</th>
<th>Unit Cost per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straw mulch, crimped or punched</td>
<td>$3,150-$6,900</td>
</tr>
<tr>
<td>Straw mulch with tackifier</td>
<td>$2,300-$6,200</td>
</tr>
</tbody>
</table>

Source: Cost information received from individual product suppliers solicited by Geosyntec Consultants (2004). Adjusted for inflation (2016 dollars) by Tetra Tech, Inc.

Inspection and Maintenance
- Areas where erosion is evident should be repaired and BMPs re-applied as soon as possible. Care should be exercised to minimize the damage to protected areas while making repairs, as any area damaged will require re-application of BMPs.

- The key consideration in inspection and maintenance is that the straw needs to last long enough to achieve erosion control objectives. Straw mulch as a stand-alone BMP is temporary and is not suited for long-term erosion control.

- Maintain an unbroken, temporary mulched ground cover while disturbed soil areas are inactive. Repair any damaged ground cover and re-mulch exposed areas.

- Reapplication of straw mulch and tackifier may be required to maintain effective soil stabilization over disturbed areas and slopes.